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Motivation

The duelling bandit problem was introduced by Yue et al. (2011). It is motivated by applications where
absolute rewards have no natural scale or are difficult to measure. In applications where a user has to
provide feedback it is often easier for them to express a preference between two alternatives than to
provide a value-judgement on a single option. For example, a user may provide preference between a set of
search engine results by choosing one instead of another.

Estimating the preference matrix

Each non-diagonal probability in the preference matrix is unknown and so must be estimated from
observations. Like with Thompson Sampling we quantify our uncertainty in the preference by a
posterior distribution. For this problem a Beta distribution is used, since the feedback is Bernoulli.
Letting n;;be the number of times arm i has been preferred to arm j, the posterior is given by

Beta (ni,j +1,n,,; + 1)
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Thompson Sampling is an algorithm for the multi-armed bandit algorithm that has empirically shown
impressive performance as well as strong theoretical guarantees. It is based on using a Bayesian posterior
of the reward. For a given application, this should allow expert knowledge about the application domain to
be more easily incorporated. It has also been suggested that the stochastic nature of the strategy provides
some robustness to delayed rewards.
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We propose an algorithm for the duelling-bandit problem based on a game-theory analogy that incorporates

Thompson Sampling. We show empirically performance comparable, or better than state-of-the-art
algorithms for the problem. We also provide a problem-dependent regret bound.
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Problem Definition

In the duelling bandit problem there are K arms. There is assumed to be a preference matrix, unknown to
the agent, where element p; ; is the probability that arm i is preferred to arm j. The preference matrix is
such that there exists a unique Condercet winner. Let arm w be the Condercet winner, then the Condercet
winner is defined such that P, ;> 1/2 Vj # w.

At each time step the agent must select a pair of arms (i, j). The environment then returns a preference
between the arms, observed by the agent, according to the probability specified in the preference matrix.
The simple regret T'¢ at timestep t is given by

pw,i+pw,j_1
2

The cumulative regret is the cumulative sum of the simple regret over the time the agent has been selecting

arm pairs.
T
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Two-player extensive-form game

Row player (RP) picks first arm. L, .

Plays the minimax solution. m p I I
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mean of its posterior distribution. For each arm RP

can play, find the corresponding arm CP would play Our proposed algorithm, MaxMin Thompson Sampling (MaxMinTS) was evaluated via simulations drawn from 3 different distributions
E to minimise RP's payoff. This forms an active set of of preference matrix. The algorithm was compared to other algorithms suitable for the duelling-bandit problem. These were, RUCB,

Tt arm pairs. MultiSBM and Beat-the-mean (BTM).

Secondly, now using a Thompson sample estimate . , , , , . _ . L .
for the preference probabilities, RP chooses the arm The first set of simulations were based on the LETOR dataset. This dataset is based on an information retrieval application in which

that maximises its payoff from the active set the bandit algorithm is used to find the best ranker from a set of search engine ranking strategies (such as PageRank).

The second set of simulations were based on an artificially-created environment. The goal was to test the algorithm in environments
where the transitivity of preference was not preserved and instead there were cycles in the preferences. For example, such an
environment could have A preferred to B, B preferred to C and C preferred to A, as long as there was one Condercet winner.

The objective of the agent is to minimize the expected cumulative regret. C P C P C P Column player picks second arm The final set of simulations were based on another artificially-created environment. The goal was to test the algorithm in an
Plays best response ' environment where there was no preference between most of the arms (there was a draw between the arms).
Other forms of simple regret are possible. The above was chosen as it was used by Zoghi et al. (2013) and so . . _ . . .
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there is an arm selected by the row player and an arm selected by the column player. In the second This is assumed to be for 1 of 2 reasons. Time le6 Ti 1e6 Time le6
phase the column players arm can be changed. For instance, the strategy might decide to have the 1) The row player has played the Condorcet winner, in which case the column player should also Ime
column player play the same arm as the row player. play the same arm.
2) The preference matrix is poorly estimated. In this case we ensure the column player explores
arms.

Discussion

We have presented a new algorithm for the duelling-bandit problem. It does not require knowledge of the time-horizon or have any
parameters to tune. The algorithm was inspired by a game-theoretic view of the problem. We believe proposing the problem in game-
theoretic terms provides an interesting framework with which to design algorithms for variations of the duelling-bandit problem, for
which our own proposal is just one.

From preference matrix to payoff matrix

The preference matrix can be transformed to a payoff matrix for a two-player game.
The payoff for the row player is

Pij — 35 if © # J
—3 if1=
This leads to a zero-sum game that is anti-symmetric.

Cumulative regret upper-bound

We have proved a problem-dependent bound on the cumulative regret of

RT:O [22 lOgT K3

This is a factor of K from the optimal.

Our regret bound is not optimal by a factor K. Our empirical results would suggest that the algorithm is as good as, or better, than
algorithms for which optimal regret bounds have been established. Further work includes resolving this disparity. We conjecture that
it is our regret bound which can be further improved.
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We conjecture that the algorithm has a-dependent bound on the cumulative regret of

Rr =0 (R logT + K)
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Notice that the payoff, if both players choose the same arm, is artificially forced as to make it the worst

possible choice. This design decision was taken because nothing is learned by the agent when choosing
the same arm twice in a pair. The possibility to choose this pair is given later in phase 2.




