
Max-Min Thompson Sampling for the K-armed Duelling Bandit Problem

Phase 1: Play a two-player extensive-form game to initially pick arms to play, using 
              posterior sample estimates (like Thompson Sampling) to balance exploration.

Phase 2: Potentially alter choice of column player to further steer exploration/exploitation.

Approach
Our approach is as follows

The first phase requires us to define the payoff matrix for the two-player game. In this phase the game 
is constructed so that it is undesirable for each player to play the same arm. After the game is played 
there is an arm selected by the row player and an arm selected by the column player. In the second 
phase the column players arm can be changed. For instance, the strategy might decide to have the 
column player play the same arm as the row player.

From preference matrix to payoff matrix
The preference matrix can be transformed to a payoff matrix for a two-player game. 
The payoff for the row player is 

This leads to a zero-sum game that is anti-symmetric.  
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Notice that the payoff, if both players choose the same arm, is artificially forced as to make it the worst 
possible choice. This design decision was taken because nothing is learned by the agent when choosing 
the same arm twice in a pair. The possibility to choose this pair is given later in phase 2.  

Row player (RP) picks first arm.
Plays the minimax solution. 
Firstly, RP estimates the preference matrix by the 
mean of its posterior distribution. For each arm RP 
can play, find the corresponding arm CP would play
to minimise RP's payoff. This forms an active set of 
arm pairs.
 Secondly, now using a Thompson sample estimate
for the preference probabilities, RP chooses the arm 
that maximises its payoff from the active set 

Column player picks second arm.
Plays best response.

RP

CP CP CP CP

Two-player extensive-form game
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Cycles simulation
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Draws simulation
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Empirical evaluation
Our proposed algorithm, MaxMin Thompson Sampling (MaxMinTS) was evaluated via simulations drawn from 3 different distributions 
of preference matrix. The algorithm was compared to other algorithms suitable for the duelling-bandit problem. These were, RUCB, 
MultiSBM and Beat-the-mean (BTM).

The first set of simulations were based on the LETOR dataset. This dataset is based on an information retrieval application in which 
the bandit algorithm is used to find the best ranker from a set of search engine ranking strategies (such as PageRank).
The second set of simulations were based on an artificially-created environment. The goal was to test the algorithm in environments 
where the transitivity of preference was not preserved and instead there were cycles in the preferences. For example, such an 
environment could have A preferred to B, B preferred to C and C preferred to A, as long as there was one Condercet winner. 
The final set of simulations were based on another artificially-created environment. The goal was to test the algorithm in an 
environment where there was no preference between most of the arms (there was a draw between the arms).

Discussion
We have presented a new algorithm for the duelling-bandit problem. It does not require knowledge of the time-horizon or have any 
parameters to tune. The algorithm was inspired by a game-theoretic view of the problem. We believe proposing the problem in game-
theoretic terms provides an interesting framework with which to design algorithms for variations of the duelling-bandit problem, for 
which our own proposal is just one. 

Our regret bound is not optimal by a factor K. Our empirical results would suggest that the algorithm is as good as, or better, than 
algorithms for which optimal regret bounds have been established. Further work includes resolving this disparity. We conjecture that 
it is our regret bound which can be further improved.  

Motivation

Problem Definition
In the duelling bandit problem there are K arms. There is assumed to be a preference matrix, unknown to 
the agent, where element        is the probability that arm i is preferred to arm j. The preference matrix is 
such that there exists a unique Condercet winner. Let arm w be the Condercet winner, then the Condercet 
winner is defined such that         > 1/2               . 
At each time step the agent must select a pair of arms (i, j). The environment then returns a preference 
between the arms, observed by the agent, according to the probability specified in the preference matrix. 
The simple regret       at timestep t is given by 

The cumulative regret is the cumulative sum of the simple regret over the time the agent has been selecting 
arm pairs.  

The objective of the agent is to minimize the expected cumulative regret.

Cumulative regret upper-bound
We have proved a problem-dependent bound on the cumulative regret of 

This is a factor of K from the optimal.

We conjecture that the algorithm has a-dependent bound on the cumulative regret of 

Altering the column players move
The payoff matrix was formed such that the same arm will never be chosen for both arms in a 
pair. If the optimistic corresponding to the chosen pair exceeds 0.5, it means the row player 
believes they will receive a positive payoff.
 This is assumed to be for 1 of 2 reasons.
1) The row player has played the Condorcet winner, in which case the column player should also 
play the same arm.
2) The preference matrix is poorly estimated. In this case we ensure the column player explores 
arms.

Algorithm and exampleThe duelling bandit problem was introduced by Yue et al. (2011). It is motivated by applications where 
absolute rewards have no natural scale or are difficult to measure. In applications where a user has to 
provide feedback it is often easier for them to express a preference between two alternatives than to 
provide a value-judgement on a single option. For example, a user may provide preference between a set of 
search engine results by choosing one instead of another. 

Thompson Sampling is an algorithm for the multi-armed bandit algorithm that has empirically shown 
impressive performance as well as strong theoretical guarantees. It is based on using a Bayesian posterior 
of the reward. For a given application, this should allow expert knowledge about the application domain to 
be more easily incorporated. It has also been suggested that the stochastic nature of the strategy provides 
some robustness to delayed rewards. 

We propose an algorithm for the duelling-bandit problem based on a game-theory analogy that incorporates 
Thompson Sampling. We show empirically performance comparable, or better than state-of-the-art 
algorithms for the problem. We also provide a problem-dependent regret bound.   

Other forms of simple regret are possible. The above was chosen as it was used by Zoghi et al. (2013) and so 
provided a suitable definition to allow comparison with previous work.  

Estimating the preference matrix
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Each non-diagonal probability in the preference matrix is unknown and so must be estimated from 
observations. Like with Thompson Sampling we quantify our uncertainty in the preference by a 
posterior distribution. For this problem a Beta distribution is used, since the feedback is Bernoulli. 
Letting n  be the number of times arm i has been preferred to arm j, the posterior is given by i,j
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